artdaq Utilities - Bug #21611

DAQInterface advanced memory usage seems to have trouble with certain FHiCL over-rides
01/02/2019 08:51 AM - Kurt Biery

Status: New Start date: 01/02/2019
Priority: Normal Due date:

Assignee: John Freeman % Done: 0%
Category: Estimated time: 0.00 hour
Target version: Spent time: 0.00 hour
Experiment: - Co-Assignees:

Description

To reproduce the problem:

e either use an existing artdag-demo installation or create a new one, and update the artdaqg-utilities-daginterface package to
commit hash ac86bcb0037e6968df3fd52b59ac80186ad86a59

e run 'sh ./run_demo.sh --config mediumsystem_with_routing_master --bootffile
“pwd’/artdag-utilities-daginterface/simple_test_config/mediumsystem_with_routing_master/boot.txt --comps component01
component02 component03 component04 component05 component06 component07 component08 component09
component10 --runduration 40 --no_om'

¢ change the artdag-utilities-daqinterface commit hash to a0a50a104d119be8c336a9d81af4fe381bdb9fd4 and re-run the test
listed above

(Both of these commits were done on the 'develop’ branch of artdag-utilities-daginterface.)
Then,

e compare the differences in those two versions of the code. As you will see, the only difference is the presence of the
component01_standard.fragment_receiver.max_fragment_size_bytes parameter in component_standard.fcl in the earlier
commit. Please Note that this parameter is not used at this point in time. component01_hw_cfg.fcl does not yet include
component_standard.fcl, etc.

e compare the two sets of run_records for the two runs that were just performed. As you will see, the second run has incorrect
values for the max_fragment_size_words parameter in the component02-10 FHICL files. (It has 1024, when it should have
128000.)

It seems as though the advanced memory usage logic is picking up the last value for max_fragment_size_bytes in
component_standard.fcl and using it for all components, even though that declaration of max_fragment_size_bytes is specific to
component01.

For reference, here is a copy of the settings_example file that | am using:

[biery@mu2edaq0l DAQInterface]$ pwd
/home/biery/331Demo/DAQInterface

[biery@mu2edag0l DAQInterface]$ cat settings_example
JCF, Sep-16-2017

This file is an example of a settings file which would work with an
artdag-demo installation, assuming the installation was performed
with artdag-demo's quick-mrb-start.sh script. It is valid as of
artdag-demo v2_10_02; more details on artdag-demo installation can
be found in
https://cdcvs.fnal.gov/redmine/projects/artdag-demo/wiki. Note that
the user will need to (A) make sure that a directory called
SHOME/run_records has been created and (B) make sure to set the
productsdir_for_bash_scripts variable, below, to a products
directory containing the xmlrpc_c package (needed for DAQInterface

e oS W W e S S S 3 3 o

to receive commands)

log_directory: /home/biery/331Demo/daglogs
data_directory_override: /scratch/biery/data

11/23/2020 1/2

record_directory:

package_hashes_to_save:

productsdir_for_bash_scripts:

boardreader timeout:

eventbuilder timeout:

aggregator timeout:

60
3
30

/home/biery/331Demo/run_records

[artdag-demo, artdag—-core—-demo, artdaqg]
/cvmfs/fermilab.opensciencegrid.org/products/artdag

0

Currently

(as of 2018-07-10)

needs to be big enough for all simple_test_config/ examples.

The "biggest" example has 10 BR's -- so the xfer between the EB and DL needs to be able
to handle the data from the 10 BRs.
#max_fragment_size_bytes: 91000000

all_events_to_all_dispatchers:

true

advanced_memory_usage:

transfer_plugin_to_use:

true

TCPSocket

[biery@mu2edag0l DAQInterface]$ date
Wed Jan 2 08:49:47 CST 2019

History

#1 - 01/08/2019 06:16 PM - John Freeman

I'll start with the reason for the problem; then I'll discuss a couple of solutions:

The issue is that it's DAQInterface's code, and not a FHiCL interpreter, which is plucking out the max_fragment_size_bytes variable from the FHiCL
document, so some of the capabilities of a FHICL interpreter - in the example given above, the ability to associate variables with certain tables - are
missing. DAQInterface simply looks for the last (uncommented) line in the FHICL document which contains a max_fragment_size_bytes variable and
uses its value, i.e.

res re.findall (r"\n["#] *max_fragment_size_bytes\s*:\s* ([0-9\.exabcdefABCDEF]+)", procinfo.fhicl_used)

...meaning that it's not sophisticated enough to figure out that a line like

component0l_standard.fragment_receiver.max_fragment_size_bytes: 8192

at the end of a FHICL document is only relevant to component01, and not component02, etc.
Possible solutions include:

® Have DAQInterface call fhicl-dump on the FHICL documents BEFORE performing bookkeeping, rather than after, as is currently the case. If this
change is made, fhicl-dump can process out the syntactical complexity of a line like
"component01_standard.fragment_receiver.max_fragment_size_bytes: 8192", providing DAQInterface with the correct
max_fragment_size_bytes value in a simple "max_fragment_size_bytes: <value>" format. However, once this happens, in order to preserve the
"canonicalness" of the FHICL documents we're either stuck with (A) rerunning fhicl-dump again after bookkeeping is performed, or (B) attempting
to get bookkeeping to preserve the canonicalness of the FHICL document, which might be difficult especially in parts of bookkeeping where
variables get added into the FHICL (e.g., max_event_size_bytes getting added into the eventbuilder, datalogger and dispatcher processes
automatically in the case of advanced memory management - DAQInterface would need to figure out alphabetically where to place the variable,
preserve whitespace correctly, etc.)

Have DAQInterface not allow you to use any FHiCL syntax more sophisticated than a "max_fragment_size_bytes: <value>" on a line, i.e., insist
there only be whitespace between the start of the line and the "max_fragment_size_bytes" token. If we do that, we lose some of the
sophistication of FHiCL.

Have DAQInterface call some Python function provided by FHiCL developers which will give it the correct max_fragment_size_bytes value once
the function is provided with the FHiCL document. The disadvantage there is that we'd be adding an additional dependency to DAQInterface if
this were provided in some package.

11/23/2020 22

http://www.tcpdf.org

